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Abstract:

Silicon (Si) has long been known to provide beneficial effects on soil and plant growth.
There is a significant collection of scientific literature that supports the beneficial effects of Si
when incorporated into agricultural practices on a wide variety of crops. Most scientists and
state regulators do not yet consider Si as an essential nutrient for plant growth. However, Si has
recently been recognized as a Beneficial Substance by The Association of American Plant Food
Control Officials (AAPFCO). This review of existing papers and research will outline the current
knowledgebase surrounding the role that Si plays in plant nutrition, soil composition and quality,

stress tolerance to abiotic and biotic factors and the metabolism of Si within the plant.

The application of Si derived from natural silicates has been shown to reduce the effects
of environmental stresses on a plant as well as make more efficient use of soil and fertilizer
nutrients such as nitrogen and phosphorous. Crops are divided into two groups when you
discuss Si utilization by a plant. There are Si accumulators, where Si is greater than 1% of a
plant’s dry weight, and Si non-accumulators, where the Si is less than 1% of a plant’s dry weight.
Seven of the ten most planted crops in the world are Si accumulators. Most researchers believe
Si is taken up as mono-silicic acid (H4Si04) and moves in the xylem and the phloem of a plant’s
vascular tissue. Once in the plant the Si tends to form amorphous silica particles called
phytoliths. The mode of action is still not completely understood and researchers are in

disagreement as to the active or passive nature of phytolith formation.

The role that Si plays in reducing the impact on plants from abiotic and biotic stresses
such as drought, disease, and insect stresses, has been well documented across a range of crops.
Si functions in many different ways within a plant and most researchers believe it is a
combination of multiple Si effects that allow plants to better tolerate the many stress factors a
plant is exposed to in nature. Soil applications of Si have also been demonstrated to reduce the
toxic impact from high levels of metals in the soil including manganese, cadmium, copper and

arsenic. While much is known about Si and the impact Si has on plant growth factors there is

Silicon and its Role in Crop Production by Dr. Patrick McGinnity, PhD — April 2015




still much to be studied in regards to Si availability, Si levels in the soil and the role Si plays in

plant metabolism and stress management.

Introduction

Silicon (Si) is the second most abundant element in the earth’s crust. Silicon is present
in the soil in many forms that vary with the pH of the soil solution. If the soil pH is below 9.0, Si
is primarily in the monosilicic acid form, Si(OH),, and is found in soil solution at concentrations
ranging from 14-20 mg Si/L. Even though Si has been found at significant concentrations within
a range of plant species it is not currently considered an essential element for plant growth and
development. Historically in most soils Si concentrations were not considered limiting to plant
growth. However, as agriculture has become more intensive and yields have been dramatically
increasing, the level of Si being removed from the soil has also been increasing resulting in
depleted soil Si concentrations and limited plant growth and yields. Removal rates of Si varies
with the plant species, for example sugar cane removes 300 kg ha/year (Meyer and Keeping
2001), rice removes 500 kg/ha/year (Makabe et al. 2009), grasslands in the U.S. remove 22-
67 kg/ha/year (Blecker et al. 2006) while tropical forests remove 41-67 kg/ha/year (Lucas
et al. 1993; Alexandre et al. 1997) and temperate forests remove 2.3-44 kg/ha/year
(Bartoli 1983; Gérard et al. 2008; Cornelis et al. 2010). Crops remove Si faster than the natural

soil system can mineralize and replace the utilized Si.

It has been calculated that 210-224 million tons of Si are removed from cultivated soil every
year (Matichenkov and Bocharnikova 2001). This figure is roughly equivalent to the annual discharge
of dissolved silica from rivers to oceans (Berner and Berner 1996) and indicates that agriculture
may play a significant role in Si utilization and removal from the soil. Changes in farming practices
have led to less incorporation of organic matter back into the soil which often results in lower Si levels.
Savant et al. (1997a) suggested that not returning straw to the field soil might lead to

a depletion of plant-available Si in soils with a resulting decline in cereal yields.
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Variability and Essentiality

Work from the early 1800’s by de Saussure (1804) looked at Si levels in ashed plant samples
and concluded that Si concentration in plants varies according to the plant species. Plants from
the Gramineae family had some of the higher Si concentrations. There is a large variability in Si
concentration in plants, ranging from 0.1% to 10% dry weight, depending on species (Epstein
1999; Hodson et al. 2005). The species which have the highest concentration of Si are
monocots or grass species. Dicots are typically lower in Si, but there are some exceptions.
Sangster et al. (2001) suggested that the following families show higher levels of Si uptake and

utilization:

* Dicots including: Fabaceae (e.g. peas), Cucurbitaceae (e.g. cucumber and squash),

Rosales (e.g. elm trees), and Asteraceae (e.g. sunflower)

* Monocots including: Graminaceae (e.g. wheat) and Cyperaceae (e.g., sedges)

The level of Si in a plant may have more to do with its phylogenetic position in the evolutionary
tree of plant development than the soil environment in which the plant is grown (Sangster 1978 and
Hodson et al. 2005). To clarify, the evolutionary path of the plant may have more influence on Si
concentrations in the plant compared to the effect of soil and soil solution Si concentration or
the soil pH. Ma and Takahashi (2002) proposed that unlike other elements, Si is abundant in nearly
all soils; so environmental criteria do not impact Si accumulation in plants. The same authors
developed a phylogenetic tree of Si-accumulating plants and observed that Si-rich species
typically have low calcium concentrations while Si-poor species have high calcium concentrations.
They proposed a model that would differentiate Si accumulating plants from Si non-accumulating

plants. In their proposed model:

* “Si-Accumulators” have a Si concentration over 1% and a [Si]/[Ca] ratio >1.
* “Si-Excluders” have a Si concentration below 0.5% and a [Si]/[Ca] ratio <0.5.
* Plantsthat do not meet any of thesetwo criteriaare called

“Si-intermediates.”
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Deren (2001) noted that there is a significant difference among genotypes within the
same species. These differences among genotypes have been substantiated by numerous other
researchers (Hodson et al., 2005 and Ma and Takahashi, 2002). Researchers have also observed
that the while Si-accumulation is mainly a phylogenetic feature, Si availability within the soil also

will have a significant impact on the amount of Si a plant absorbs.

There have been conflicting opinions on the essentiality of Si in plant growth. Early
work by Sachs (1892) did not show a difference in plant growth despite a large difference in Si
concentration within the plant shoots. Epstein (1994) did a thorough review of all the work
done on Si and concluded that there is not conclusive evidence to the non-essentiality of Si in
plant growth and development. His position is based on the difficulty in removing all
background levels of Si in the experimental nutrient solutions and as a result not having a true
experimental control. His work suggests that Si is “quasi-essential to many of those plants for
which its absolute essentiality has not been established.” There have been significant amounts
of additional work done on the Si uptake mechanism, Si transport and Si accumulation in plants
since the Epstein (1994 and 1999) reviews that have contributed to the discussion of Si

essentiality.

The American Association of Plant Food Control Officials (AAPFCO) regulates the
products sold in the United States that claim to be fertilizers. They develop the rules and
definitions for fertilizer products as well as soil and plant amendments. AAPFCO officials still
consider Si to be a “beneficial substance” which they define as: “any substance other than
primary, secondary and micro plant nutrients that can be demonstrated by scientific research to
be beneficial to one or more species of plant, when applied to the plant or soil”. Significant
resources are being committed to scientific studies that will support the essential role that Si
plays in plant metabolism. This would affect label claims for Si products that Si is an essential

nutrient for plant growth.
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Seven out of the top 10 crops grown in the world are designated as Si accumulators so
understanding the role of Si and the mechanisms of Si uptake and translocation by the plant are
justified.

Table 1. Si Concentration of some of the most important crops ranked by production.

Crop Production (MT) Si Concentration in Shoots (%
Dry Wt.)*

Sugar Cane 1.736 1.509
Corn 826 0.827
Rice 686 4.167
Wheat 683 2.455
Potatoes 326 0.4
Cassava 232 0.5
Soybeans 231 1.399
Sugar Beet 222 2.34-7
Barley 155 1.824
Tomatoes 136 1.55

* Data from Hodson et al. (2005)
Root Uptake

As mentioned earlier, when soil pH is below 9.5, Si is mostly present as the monomeric
orthosilicic acid H4SiO, (Casey et al. 2004). The primary form in which Si is taken up by plant
roots is orthosilicic acid although there has been a suggestion from Fu et al. (2002) that root

uptake of Si occurs through Si soil particles being incorporated physically into the root.

In rice (Raven, 2001) and wheat (Rains et al. 2006) it has been proposed that a metabolic
mechanism was involved with the active uptake of Si. The uptake mechanisms are thought to
be similar for rice and wheat as well as other crops with only minor differences based on plant

species.
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Ma et al. (2004) proposed two Si transporters; one named SIT1 is responsible for the
transport of Si from the external solution to the cortical cells. The other, named SIT2, is
responsible for the transport of Si from the cortical cells to the xylem. The transport systems
work against the concentration gradient so it implies there is some type of energy consuming
active transport system. Ma et al. (2001a) also suggested that the uptake of Si occurs in the
lateral roots but does not involve the root hairs. Si influx transport mechanisms have been
demonstrated in rice and corn (Mitani et al. 2009) but work is continuing in wheat to identify

the transport mechanism.

Si transport more than likely involves both active and passive uptake mechanisms in the
same plant (Henriet et al. 2006; Mitani and Ma 2005; Ding et al. 2008: Liang et al. 2007; Gerard
et al. 2008). Work done in bananas grown hydroponically showed that when bananas were
grown in solution with high Si concentrations, uptake was proportional to the mass flow-driven
supply. At low Si concentrations, Si absorption was greater than you would expect with a mass

flow-driven supply suggesting an active uptake mechanism.
Transfer to Shoots

Once Si has moved into the xylem it is moved to the shoots. This process is driven by
transpiration within the plant and efficiently moves Si into the shoot tissue. The role of
transpiration in Si movement to the shoot has been demonstrated in many studies (Henriet et
al. 2006; Ding et al. 2005; Leng et al. 2009). Mitani et al. (2009) has isolated a gene that
regulates the Si transport system for xylem loading in corn. Additional work is being dome to

evaluate the relationship between active and passive transport of Si to the plant shoots.
Accumulation in Shoots

Studies in wheat by Casey et al. (2004) have shown that Si is present in mono- and di-
silicic acids with the mono- silicic acid being the predominant form. The soluble form of Si is
small compared to the solid form of Si in the plant. When Si is transported into the shoots it has
been found to quickly precipitate to amorphous silica. Lux et al. (2003) observed solid Si
aggregates in the root within 2 hours of moving a sorghum plant from a Si-poor nutrient

solution to a Si-rich environment.
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Organo-silicon compounds in Si treated plants have not been well documented. Inanaga
et al. (1995) worked in rice and suggested that Si forms links between lignin compounds and
carbohydrates. Si-C bonds have not been shown and the instability of the Si-O-C bond near
neutral pH suggests that Si may be regulated in a different way from other nutrients (Perry and

Keeling-Tucker 1998).

Ding et al. (2008) has shown that amorphous silica is the only form of Si within the plant. When
amorphous silica precipitates in a plant cell they are called phytoliths. The polymerization of
silicic acid forms the phytoliths and has been shown to take very little energy to polymerize.
Phytoliths are not found uniformly throughout the plant (Ponzi and Pizzolomgo 2003; Prychid et
al. 2003; Sangster et al. 2001) as they are sometimes found in the leaf or root epidermis and in

the cellular membranes.
Beneficial Effects of Si
Managing Environmental Stresses

The numerous benefits that supplemental applications of Si can provide have been well
documented in a range of studies including field, container and hydroponic trials (see the
reviews by Jones and Handreck 1967; Savant et al. 1997b; Epstein 1999; Datnoff et al. 2001,
Datnoff and Rodrigues 2005). The role that Si plays in alleviating environmental stresses on plant
growth is due to the way Si functions in the soil as well as in the plant (See Fig 2). Si works at
several different levels and can relieve stress from biotic as well as abiotic influences as

described below.
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Benefits of Silicon

PHYSIOLOGICAL \

Increased resistance to
pathogens and insects

MECHANICAL

Enhanced K, P and Ca intake

Increased resistance to

Alleviated P deficiency pathogens and insects

Alleviated drought stress Increased resistance

to strong wind and rain

Alleviated salt stress .
Reduces Lodging

Reduced uptake of nutrients

Alleviated drought
(N and P) when present in excess 9

stress

Alleviated Mn, Cd and As toxicity

Alleviated Al and Zn toxicity

IN SOIL

Alleviated P deficiency

= Alleviated Fe toxicity
X

Alleviated Mn, Cd and As
toxicity

® Alleviated Al and Zn
toxicity

Biotic Stresses
Si has been shown to enhance the resistance of plants to many disease organisms on a

wide range of crops, including those caused by bacteria and fungi (Rodgers-Gray and Shaw
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2004) and those diseases common to wheat such as powdery mildew (Blumeria graminis),
septoria (Phaeosphaeria nodorum and Mycosphaerella graminicola), and eyespot
(Oculimacula yallundae). The effect of Si has also been demonstrated in rice on stalk rot
(Leptosphaeria salvinii), rice blast (Magnaporthe grisea), fusarium wilt (Fusarium), tan spot
(Cochliobolus miyabeanus), melting seedlings (Thanatephorus cucumeris), and leaf spots
(Monographella albescens; Ma and Takahashi 2002; Savant et al. 1997b). Datnoff et al., (1997)
have shown that in soils deficient in Si, supplemental applications of Si is as effective as a
fungicide application in controlling rice blast. Applications of Si also reduce the incidence of
powdery mildew in cucumber, barley and wheat; sheath blight in rice, ring spot in sugar cane,

rust in cowpea and leaf spot in Bermuda grass (Fauteux et al., 2005).

Applications of Si also appear to reduce insect activity on crops. This suppression
includes pests such as stem borer and a range of leaf hopper and spider mites (Savant et al.,
1997). Cotterill et al. (2007) and Hunt et al. (2008) showed that grasses treated with
supplemental applications of Si were less likely to be fed on by animal pests including wild rabbits
and locusts, than grasses that were unfertilized. It has been proposed that this may be
more of a mechanical mechanism where Si leaves are tougher and more resistant to
grazing. The beneficial effect of Si has been proven on attacks by many insect species, among
which are insect borers (Chilo suppresalis), yellow borers (Scirpophaga incertulas), rice
chlorops (Chlorops oryzae), rice leafhopper (Nephotettix bipunctatus cinticeps) and brown

leafhoppers (Nilaparvata lugens),

Two mechanisms have been proposed to explain the Si-enhanced resistance to plant
diseases and insects. The first proposed by Cheng (1982), Fauteux et al., (2005), Jones and
Hendreck, (1967) and Ma and Yamaji (2006) states that Si behaves as a physical barrier where
the Si is deposited beneath the leaf cuticle. This forms a cuticle-Si barrier that can

mechanically inhibit the fungal or insect pest penetration, reducing the infections.

The second mechanism that explains Si-enhanced resistance to pathogens proposes

that Si acts as a modulator in the host plant to the pathogen. Plants treated with Si increase
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the production of natural defense compounds including the elevated production of lignin,
phenolic and phytoalexins (Epstein 1999; Fawe et al. 2001; Ma and Yamaji 2006). When a
pathogenic fungus attacks a plant, the Si produces a broad quick response in the plant
releasing natural defense compounds to deter the development of the pathogen (Fauteux
et al. 2005). This is caused indirectly by binding specific cations or directly by increasing the

activity of specific proteins.

Abiotic Stresses

Drought Stress

Si reduces the impact of abiotic stresses on plants. Attention to drought stress has
increased with the extreme swings in rainfall patterns around the world in cultivated soils. Si
applications have been shown to have a significant positive impact on a plant’s ability to tolerate
drought stress (Eneji et al., 2008). Yield increase has been observed in a variety of crops treated
with Si when the crops are grown under moisture stress conditions (e.g., Eneji et al. 2008; Shen

et al. 2010; Pei et al. 2010).

Drought stressed wheat plants that were treated with Si fertilizer retained
greater stomatal conductance, relative water content, and water potential than un-treated
plants. Treated leaves were larger and thicker, reducing the loss of water through
transpiration (Gong et al. 2003; Hattori et al. 2005) and reducing overall water use efficiency
(Eneji et al. 2005). In the case of rice, Si increased resistance to strong winds
generated by typhoons (Ma et al. 2001b), related to the increased rigidity of the shoots
through silification. Silicon fertilization enhances the development of secondary and
tertiary cells of the endodermis which allows for increased root resistance in dry soils and
a quicker growth of roots (Bouzoubaa 1991; Hattori et al. 2003, 2005). An additional benefit
noted by Eneji et al. (2008) is that Si enhanced the uptake of major essential elements in a

range of grass crops exposed to a water deficit.
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Si applications also have an impact on other abiotic stresses including physical stresses
such as lodging, temperature extremes, freezing and UV irradiation as well as chemical

stresses from salt, metal toxicity and nutrient imbalance.

Salt Stress

Concern over quality of irrigation water and the salt toxicity that it causes in certain soils
has heightened the awareness of the effect of Si on salt tolerance for a variety of crops.
Matichenkov and Bocharnikova (2004) evaluated both dry and liquid forms of Si for the ability to
mitigate stress to the plant brought on by drought as well as improving key soil properties. Their
work in both the lab and greenhouse demonstrated that Si improved the soil water holding
capacity and the basic chemical composition of the soil. Si applications also improved a plant’s
resistance to water or salt stress. It was also observed that Si could be used in conjunction with
soil plastic-relief mapping to reduce the impact of irrigation water on salt build-up in the soil. In
addition, a number of studies have demonstrated the direct benefit Si can have to increase
yields in soils that are effected by salt stress including work by Ali et al., (2012) which showed
when calcium silicate was applied to wheat plants grown in a hydroponic solution the wheat
growth was enhanced as well as the K'/Na" ratio. Na* uptake was reduced and K" uptake was

increased.

Nutrient Regulation

Phosphorus

Si has been shown to affect the availability of phosphorus in the soil. Brenchley and
Maskell (1927) and Fisher (1929) found that Si fertilization increased the yields of barley crops
when soil phosphorus fertilization was limiting. It was observed that soil phosphorus was made

more available to plants treated with Si.

Eneji et al. (2008) also observed the interaction between Si and P uptake and concluded

that there was an effect in soil. Earlier studies had shown that the effect of Siapplications
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under phosphorus deficient conditions could be due to an in-planta mechanism, suggesting an
improved utilization of phosphorus, through an increase in phosphorylation (Cheong and
Chan 1973) or a decrease in Mn concentration (Ma and Takahashi 1990). In contrast, when
phosphorus was supplied in excess, Si limited P uptake and limited the appearance of chlorosis,

likely related to reducing the transpiration rate (Ma et al. 2001b).

Potassium—nitrogen—calcium

Mali and Aery (2008a) studied the effect of Si on K uptake both in hydroponics and in
soil. They observed that even when the concentration of Si was low there was an increase in
uptake of K. This increase in K uptake was related to the activation of H-ATPase. Mali and Aery
(2008a, 2008b) also reported an increase in absorption of N and Ca for cowpea and wheat
fertilized with increasing doses of sodium metasilicate as well as an improvement in nodulation
and N2 fixation in cowpea. Yoshida et al. (1969) have shown that a decrease of erectness of
rice leaves following excess of N application can be reduced if Si is applied as part of the nutrient

solution.

Excess Metals

Contamination of soil with trace elements due to human activities and excess metals
related to specific soil factors are common throughout the world. This pollution of the soil can
affect physiological properties in plants including a decrease in plant biomass, an inhibition of
photosynthesis and a disruption in the uptake of nutrients. There are numerous studies that
support the positive impact of Si on the toxicity symptoms caused by the problem metals
including heavy metals such as cadmium. The number of studies, which tend to prove that Si
may reduce toxicity symptoms, are steadily increasing, especially for metals of serious

concern such as cadmium (Sarwar et al. 2010).
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Iron

Studies in rice suggest that Si applications increase a plant’s root’s ability to oxidize Fe,
converting ferrous iron into ferric iron. The oxidation of iron reduces the uptake of iron which
reduces its toxicity (Ma and Takahashi 2002). It has also been proposed that Si application to
the soil could control Fe uptake from acidic soils by releasing OH- anions by roots after Si is
supplemented (Wallace, 1993).It has also been proposed that Si application to the soil could
control Fe uptake from acidic soils by releasing OH™ anions by roots after Si is supplemented

(Wallace, 1993).

Aluminum

Several attempts have been made to explain the effect of Si when high levels of Al are
present. Early work suggested that Si and Al interact in the soil to create subcolloidal and inert
aluminosilicates. This will reduce phytotoxic aluminum concentrations in the soil solution (Li
et al. 1996; Liang et al. 2007). Si may also promote the production of phenolic exudates
from roots that would chelate free Al resulting in the reduction of Al absorption by corn roots
(Kidd et al. 2001). In these situations, detoxification would be a mechanism external to the
plant. It has also been shown that aluminum can be detoxified by in-planta mechanisms
either by forming hydroxyl-aluminum silicates in the apoplast (Wang et al. 2004; Ryder et al.
2003) in roots or by a sequestration in phytoliths (Hodson and Sangster 1993; Hodson and

Sangster 2002), resulting in a reduction of Al toxicity in the shoots.
Manganese, Cd, Cu, Zn

Manganese toxicity is reduced in Si-fertilized plants because Si increases Mn binding
to cell wall limiting cytoplasmic concentrations (Liang et al. 2007; Rogalla and Romheld 2002).

Horst et al. (1999) observed that Si application reduced the apoplastic Mn concentration in

cowpea leaves, suggesting that Si may affect the cation binding capacity of the cell walls.
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Additionally, it triggers a more homogenous distribution of Mn in leaves, limiting spot

necrosis (Williams and Vlamis 1957; Horiguchi and Morita 1987; Ma et al. 2001b).

Si has effects in the soil and the plant impacting the uptake of trace metals like
Cadmium (Cd), copper (Cu), or zinc (Zn) (Liang et al. 2007). Metal concentrations in plants
may either decrease or increase upon Si application depending on the part of the plant and the
specific metal. Reduced uptake of Cd following rice fertilization with furnace slag has been
associated with an increase in soil pH which limits Cd uptake, reduction of root-shoot
translocation, and changes in compartmentation within the plant cell (Liang et al. 2007; Shi et al.
2005). Da Cunha and Do Nascimento (2009) observed that the decrease in Cd and Zn
concentrations in corn shoots grown on Cd- or Zn-contaminated soil that were treated with
calcium silicate, resulted in an increase in shoot biomass due to changes in metal speciation in
the soil rather than to pH increase (da Cunha et al. 2008). They also noted significant
structural alterations in the shoots and suggested that the deposition of silica in the endodermis
and pericycle of roots was responsible for corn tolerance to Cd and Zn stress. Hodge (2004)
indicated that Si could affect root plasticity, thereby increasing stress tolerance. Neumann and
zur Nieden (2001) found that Si affected zinc inside the plant as zinc can co-precipitate with
Si in cell walls (Neumann et al. 1997), leading to less soluble zinc in plants. In addition, foliar
application of Si decreased Cd concentration in rice grains and shoots while increasing plant
biomass (Liu et al. 2009). The authors report that alleviation of Cd toxicity and accumulation in
rice would be related to Cd sequestration in the shoot cell walls. This indicates also that Si
would be able to enter leaves through the stomata. In metal-hyperaccumulating plants, Zn can
be at least temporally associated to Si in vesicles or in the cytoplasm before Zn is being
stored in vacuoles, leaving SiO2 precipitates in the cytoplasm. Neumann and De Figueiredo
(2002) suggested that this mechanism might be responsible for the high Zn tolerance of

Silene vulgaris, Thlaspi caerulescens, or Minuartia verna.
Silicic acid also reduced the arsenic (As) concentration in rice shoots grown in

hydroponics, and arsenic transport in roots was shown to share the same highly efficient

pathway as Si, indicating that sufficient available Si in soil would be efficient at reducing As
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accumulation in rice shoots (Ma et al. 2008). A vast range of mechanisms has been proposed that
could explain the alleviating effect of Si on metal stress in planta, especially in plant shoots.
The role of soil and root factors in affecting metal uptake and reducing stress from metals on

plants is still poorly understood and more work needs to be done (Kirkham, 2006).

Plant Growth Factors

Si applications have shown a significant effect on plant lodging and density of stands
especially in cereal grain crops such as rice, wheat and barley. Deposits of Si in rice shoots
enhanced the thickness of the culm wall and the size of the vascular bundles (Shimoyama, 1958)
that results in a reduction in lodging. Strong winds that can increase lodging also act to desiccate
the plant tissue. Si has be shown to be effective in preventing excess water loss by forming

deposits on the hulls of rice.

Si also affects the erectness of plant leaves that can improve the amount of light a leaf
can intercept, thereby improving photosynthesis. Work on specific plant cultivars has shown
that as the amount of nitrogen added is increased the leaf erectness decreases. Si can
counteract that negative effect of increasing N supply on light interception as well as reducing

lodging (Idris et al., 1975).

Si has a beneficial effect on reducing stress caused by UV irradiation. Studies in rice
indicate that Si applications reduces UV stress by increasing the biosynthesis of phenolic type

compounds (Goto et al., 2003).

Summary

Seven out of the top ten crops are considered Si accumulators and Si applications have
shown a range of beneficial effects to these plants, especially where the soil Si levels are low. Si

has a significant impact on biotic and abiotic factors in plant growth and development including
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disease and insect resistance, drought stress, nutrient regulation, temperature stress, lodging

and UV stress.

Current farming practices do not supplement soil Si levels as much of the grain and
stover is removed through harvest. When Si is not returned to the soil through crop residue a
net loss or reduction in soil Si levels occur. Si phytoliths are proving to be a valuable source of Si
in the soil. The combination of the available Si coming from phytoliths and supplemental
applications of Si from new sources will have a significant impact on crop yields around the

world.
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